On θ-congruent numbers on real quadratic number fields
نویسندگان
چکیده
منابع مشابه
On Congruent Primes and Class Numbers of Imaginary Quadratic Fields
We consider the problem of determining whether a given prime p is a congruent number. We present an easily computed criterion that allows us to conclude that certain primes for which congruency was previously undecided, are in fact not congruent. As a result, we get additional information on the possible sizes of Tate-Shafarevich groups of the associated elliptic curves. We also present a relat...
متن کاملReal Quadratic Number Fields
a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...
متن کاملClass Numbers of Real Quadratic Number Fields by Ezra Brown
This article is a study of congruence conditions, modulo powers of two, on class number of real quadratic number fields Q(vu), for which d has at most thtee distinct prime divisors. Techniques used are those associated with Gaussian composition of binary quadratic forms. 1. Let hid) denote the class number of the quadratic field Qi\ß) and let h id) denote the number of classes of primitive bina...
متن کاملOn a Class Number Formula for Real Quadratic Number Fields
For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.
متن کاملANote on the Divisibilityof Class Numbers of Real Quadratic Fields
Suppose g > 2 is an odd integer. For real number X > 2, define SgðXÞ the number of squarefree integers d4X with the class number of the real quadratic field Qð ffiffiffi d p Þ being divisible by g. By constructing the discriminants based on the work of Yamamoto, we prove that a lower bound SgðXÞ4X 1=g e holds for any fixed e > 0, which improves a result of Ram Murty. # 2002 Elsevier Science (USA)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2015
ISSN: 0386-5991
DOI: 10.2996/kmj/1436403896